ExoVista User’'s Guide
Chris Stark, NASA GSFC

1. Summary

ExoVista is a hybrid IDL/C software package that generates synthetic exoplanetary
systems. ExoVista models exoplanet atmospheres in reflected light, stellar spectra
using Kurucz stellar atmosphere models, and debris disks in scattered light using
realistic spatial distributions and optical properties. Planets can be drawn from
measured/extrapolated Kepler occurrence rates and are checked for basic stability
criteria; debris disks are dynamically quasi-self-consistent with the underlying
planetary system. All bodies are integrated with a Bulirsch-Stoer integrator to
determine their barycentric velocities, positions, and orbits. The output product is a
multi-extension fits file that contains all of the information necessary to generate a
spectral data cube of the system for direct imaging simulations of
coronagraphs/starshades, as well as position/velocity data for simulation of RV,
astrometric, and transit data sets.

2. Philosophy & Numerical Approach

ExoVista was designed with two primary numerical goals. First, exoVista was
designed for speed, to rapidly generate planetary systems for a large number of
stars/scenarios. To enable this, only simple checks are performed for dynamic
stability of the planetary systems and analytic models are used for the debris disks.
Second, exoVista's output file size was minimized, such that all required information
on the planetary system is contained in < ~10 MB. To minimize file size, exoVista does
not save a simple spectral image cube. Instead, the output is a list of each point
source’s position, velocity, orbit, and contrast/flux, combined with a contrast data
cube of the debris disk (which has a smooth wavelength dependence and can be
saved at lower spectral resolution). As a consequence of saving disk contrast instead
of disk flux, exoVista cannot include thermal emission from the disk. Also, some
“massaging” of the planetary scene is required to convert it to an image (if desired).
We have provided routines in IDL (load_scene.pro) and Python (load_scene.py) that
load the output fits file to aid in converting it to a spectral image cube.

3. Use Cases

Users of exoVista will likely fall into one of three categories:

1. Those that want to use existing simulations of planetary systems to simulate
direct imaging instruments

2. Those that want to use existing simulations of planetary systems for RV,
astrometric, or transit simulations

3. Those that want to use the exoVista code to generate their own planetary
systems

For Use Case #1, the user will download existing .fits planetary scene files, and then
use one of the “load_scene” tools (or create their own). The “load_scene” tool loads
fits planetary scene files and places it into the desired format to simulate the
response of a coronagraph or starshade.

For Use Case #2, the user will download existing .fits planetary scene files and then
manually interact with the fits files to extract the desired information. Examples of this
are provided later.

For Use Case #3, the user must become familiar with the details of how exoVista
works, all of its modules, dependencies, and have adequate computational facilities.

Examples of these use cases are provided at the end of this manual. However,
regardless of what you intend to do, you should have an understanding of exoVista's
modules, the assumptions made, methods used, and format of the output files.

4. Installation

4.1 Use Case #1 & Use Case #2

An IDL license is not required for these use cases if you intend to interact with existing
fits files using another coding language. We still recommend downloading the
exoVista code, which provides example load_scene routines that the user can run or
use as a guide.

To obtain the exoVista code, download the most recent exovista.zip package. Unzip it
and place the extracted files in the desired directory on your machine. Then obtain
the desired package of fits files and place them in the desired location. (Since you
will not be running the main modules of the exoVista code, you do not need to have a
C compiler present on your system as described in the next section.)

4.2 Use Case #3

To run the main modules of exoVista, you must have an IDL license and a C compiler
(Apple users could install the XCode package to obtain a C compiler).

To install exoVista, download the exovista.zip package containing the software. Unzip
it and place the extracted files in the desired directory on your local machine.

Open a terminal window, navigate to the directory containing the exoVista code, and
start IDL by typing “IDL.” Compile the Bulirsch-Stoer integrator by executing the
following command:

IDL> compilec, ‘'nbody’

This should call your C compiler successfully and generate the file 'nbody.so’ on your
machine in the same location as the 'nbody.c’ file. You are now ready to run all
exoVista modules.

5. Modules

5.1 load_stars.pro
Syntax: load_stars, s

The first step of running exoVista is to define your star(s). You can define your own
star(s) or use load_stars.pro to load the ~8k stars from the HabEx/LUVOIR master
target list (these are stars w/in 50 pc and predominantly brighter than 8" mag). If you
are interested in defining your own star(s) instead of using load_stars, take a look at
the generate_solarsystem.pro routine, which provides an example of how to define
your own star structure.

load_stars will return an array of star structures to the desired variable (here we adopt
the variable s). Each entry in s (e.g., s[0], s[1], etc.) is a structure containing a variety of
stellar parameters. The following is an example of how to call load_stars, along with a
list of the star structure tags:

|[IDL> load_stars,s

Loading target list...done.

|[IDL> print,tag_names(s)

|STARIZ HIP TYC RA DEC UMAG BMAG VMAG RMAG IMAG JMAG HMAG KMAG M_V DIST TYPE LSTAR TEFF ANGDIAM MASS LOGG RSTAR WDS_SEP WDS_DMAG
IDL>

Not all of the above tag names are necessary to run exoVista. See
generate_solarsystem.pro for an example on which ones need to be defined.

The HabEx/LUVOIR master target list was generated by combining the Hipparcos and
Gaia TGAS/DR2 target lists within 50 pc. All Hipparcos distances were updated with
Gaia distances. The Washington Double Star catalog was cross-referenced to obtain
simple binary parameters (separation and dmag of nearest companion); no other
binary catalogs were referenced. Spectral type was taken from the original Hipparcos
release and updated with SIMBAD. Additional photometry was pulled from SIMBAD.
All luminosity class lll and IV stars were removed. Stellar angular diameters are
estimated using the B-V analytic fits from Boyajian et al. (2014). Physical stellar
diameters are based off the angular diameter and distance. An updated table based
off of Pecaut & Mamajek (2013) is used to estimate stellar mass and effective
temperature by interpolating B-V. Log(g) is estimated from this mass and the
estimated stellar radius. Luminosity is estimated from the absolute V band magnitude
and a color correction using Eq 9 of Torres (2010) and the color correction factors in
footnote 10 of Pecaut & Mamajek (2013). This target list is not intended to be
accurate on a star-by-star basis. It is ended to roughly represent the population of
nearby main sequence and sub-giant stars. This target list could be substantially
improved in accuracy, but a thorough analysis of every star in this list is beyond the
scope of this project.

5.2 generate_planets.pro
Syntax: generate_planets, s

After creating your stars, you may call generate_planets to distribute planets around
each star. generate_planets.pro modifies the array of star structures to include:

e j:theinclination (in degrees) of the system midplane

e PA: the position angle (in degrees) of the system midplane

e planet: a 30-element array of planet structures (each star can accommodate

up to 30 planets) containing the planets’ data.

Below is an example of how to call generate_planets.pro along with a list of the planet
structure tags.

IDL> generate_planets,s
Generating planets...
Retrieving occurrence rates in non-standard space of (mass, semi-major axis)...
Loading occurrence rates: occurrence_rates/NominalOcc_Mass.csv
87504.3 planets expected from occurrence rates
87678.0 planets expected from Monte Carlo draw of occurrence rates
87678 planets generated after imposing stability limits.
...done.
% Program caused arithmetic error: Floating divide by @
[IDL> print,tag_names(s[0].planet)
'M R ALBEDO_FILE A E I LONGNODE ARGPERI MEANANOM
|l IDL> print,s[0].planet[7]
{ J0.512824 0.836646 ./geometric_albedo_files/Mars.txt 9.09240 0.00000 4.42195 162.836 94,5883 157.303}
| IDL>

The planet structure consists of the planet mass (M), radius (R), the filename
containing the planet's reflected light geometric albedo, and orbital elements (in AU
and degrees). Planets are sorted by semi-major axis a. All orbital elements are
relative to the system midplane orientation.

Planets are drawn from the mass-semi-major axis occurrence rate maps of Dulz et al.
(2020). By default the occurrence rate maps are treated as a probability map. For all n
stars a Monte Carlo draw is performed on every bin in (M, a) space of the map to find
the total number of planets to distribute in each bin. As a result, when running
exoVista the number of planets generated may vary from run to run, and be greater
or less than the expectation value.

After determining the total number of planets to generate for each (M, a) bin, the
code randomly assigns those planets to stars. Planet mass and semi-major axis is
randomly spaced logarithmically within each bin. Planet mass is used to determine
radius using the relationship of Chen & Kipping (2017). Eccentricities are zero by
default. Planet inclinations are uniformly distributed between 0 and 5 degrees by
default, relative to the system midplane. All other orbital angles are randomly
distributed between 0 and 360 degrees.

After adding planets, the code checks all planet pairs to determine if they are
dynamically stable. To do so, exoVista calculates the mutual Hill sphere and requires
A > 6. All planets with A < 6 are deleted. The code then iteratively adds more planets
until the desired number per bin are generated. If any bin has not achieved its
desired number of planets in 50 iterations, the creation of planets ends.

We note that the occurrence rates of Dulz et al. (2020) adopted A > 9, as motivated
by the criteria for Gyr of stability. Adopting the same criteria here greatly slows the
planet distribution process. Because we are generating systems that are “plausible,”
and not necessarily stable for many Gyr, we relaxed this criterion to speed up the
code.

Planet albedo files are then randomly assigned based on which albedo files are
applicable to which (M, a) bin. Simple rules assigning each albedo file are defined in
assign_albedo_file.pro. Each albedo file can be assigned a probability from 1-100
that determines the relative likelihood of drawing that planet, but this must be
compared to the total probabilities of all other planets assigned to the same phase
space. Note that exoEarth candidates (EECs) are treated separately in their own
phase space to more easily control their distribution. Currently all EECs are assigned

some form of an Earth-like atmosphere (Archean, Hazy Archean, Proterozoic High-
O2, Proterozoic Low-O2, and Modern Earth) based on the relative timescales of these
phase of Earth's history. See assign_albedo_file.pro for details.

Note that we apply the occurrence rates in flux-normalized semi-major axis. |.e.,
we interpret the occurrence rates of Dulz et al. (2020) to have a constant eta_Earth
regardless of spectral type. Planet semi-major axis is drawn from the occurrence
rates, and then applied to an individual star by multiplying by the square root of the
bolometric luminosity.

Note that the planet generation process does not currently attempt to
reproduce the empirically measured multiplicity—the tendency of planetary
systems to host more than the average number of planets per star.

5.3 generate_disks.pro
Syntax: generate_disks,s

After distributing planets to each star that are quasi-dynamically stable, you can call
generate_disks.pro to distribute debris disks to each star. generate_disks modifies the
input data structure to contain an additional tag named disk. disk is up to a 3-element
array of disk structures, containing “warm,” “cool,” and “cold” debris disks. Each entry
in disk contains basic information that defines the disk’s orientation, density,
geometry, and scattering properties. Below is an example call to generate_disks and
the tag names associated with the disk data structure.

IDL> generate_disks,s

Generating 2 disk components per star...done.

% Program caused arithmetic error: Floating illegal operand

IDL> print,tag_names(s[0].disk)

LONGNODE I NZODIS R DROR RINNER ETA HOR G W

IDL> print,s[0].disk[1]

{ 0.00000 0.00000 18.0921 49.7390 0.0528117 0.0100000 0.148704 0.170033 0.841447 0.333514 0.133600
0.411592 0.103476 0.484932

}

IDL>

Here i and longnode are the inclination and longitude of the ascending node for the
disk relative to the system midplane; all disks are currently assigned the same
orientation as the system midplane. nzodis is the density of the debris disk, as drawn
from the best-fit LBTI distribution. g is a 3-element array containing the scattering
asymmetry parameters for a linear combination of 3 Henyey-Greenstein scattering
phase functions; their relative weights are contained in w. The values of g and their
weights are randomly drawn from values nearby the best fits to Saturn’s G ring from
Hedman & Stark (2015).

By default exoVista distributes 2 disk components. ExoVista determines plausible
locations for the parent body rings based on the underlying planetary system. To do
this, exoVista determines all semi-major axes that are not within 3 Hill radii of a planet.
For the inner warm component, exoVista finds the most stable region (largest width
of stable semi-major axes in log space) between 0.5 and 5 AU. For the cool
component, the process is repeated from 5-50 AU. If the user desires a third
component, it is placed between 50-500 AU.

1.0 T
08 .
-
€ 06l -
a L
0
2 B 4
=} Power law
E 04r halo ~r-5 -
s L]
0.2 .
Truncation due to
massive planets
DOLS v e) e)
0] 20 40 60 30 100

Circumstellar distance (AU)
Each component is described by a piece-wise combination of analytic models as
shown in the Figure above. This includes a Gaussian parent body ring at distance R
and of width dR, within which all dust is assumed to follow a Dohnanyi size
distribution. Outside of R+dR the disk is modeled as a power law halo of dust, and
inward of R-dR the disk is modeled as inward-migrating, colliding dust. A Dohnanyi
size distribution is adopted for the Gaussian ring. Although the outer halo component
should have a non-Dohnanyi size distribution, the expected size distribution is not
well-described analytically and exoVista currently assumes it is Dohnanyi as well. The
interior component is modeled with the analytic collisional model of M. Wyatt, and
the rate of collision is calculated quasi-self-consistently with the exozodi density. The
collision rate is calculated independently for each grain size, such that the inward-
migrating component can have a significantly non-Dohnanyi size distribution for
massive disks, and thus exhibit a radial color gradient. Finally, exoVista models
dynamically-ejected dust by applying an (r/r_truncate)3 weighting to dust, where
r_truncate = 1.1 * a * (1+e) for the outer-most planet interior to the belt thatis > 100
Earth masses. The (r/r_truncate)3 behavior is motivated from the modeled optical
depth reduction of inward-migrating Kuiper Belt dust due to Jupiter and Saturn (see
Kuchner & Stark 2010).

Note that exoVista does not model mean motion resonant ring structures
created by planets. All disk models are assumed to be azimuthally symmetric
and centered on the star.

5.4 generate_scene.pro
Syntax: generate_scene,s

Once the stars have been loaded, the planets have been distributed, and the disks
have been placed, the user may generate the .fits scene files. This is the most
numerically demanding portion of the exoVista package, with most time spent
generating the disk image.

generate_scene defines a wavelength array for the star and planets, with the default
being 0.3-1.0 microns with R=300. The user can change this, though exoVista does
not handle thermal emission from the disk or planets. generate_scene also
defines the wavelength array for the disk, which defaults to the same range as the star
and planets, but with R=10. The lower spectral resolution for the disk is allowed
because the disk’s spectral features are broad at visible wavelengths. The lower
spectral resolution allows us to save substantial disk space for the output products.
generate_scene then loads the geometric albedo files for the planets and
interpolates to the desired spectral resolution.

generate_scene also defines the dust grain size resolution (s/ds) for the debris disk
images. By default s/ds = 5, which has been thoroughly tested to produce adequate
results. We note that the Mie theory calculations required to find Qabs and Qsca as a
function of grain size and wavelength have all been done in advance, so if the user
desires to change the grain size resolution, those calculations will have to be redone.
See details of this in the appendix. The range of grain sizes extends from the blowout
size to 100x the longest wavelength considered. Currently all stars are assumed to
have a blowout size of 0.5 microns.

generate_scene then loops through all stars. For each star, the code first retrieves the
best Kurucz stellar model based on the stellar effective temperature, luminosity, and
log(g). The stellar spectral model is normalized to reproduce the star’'s observed V
band flux, not normalized to the bolometric luminosity or radius, which are
approximate quantities derived from analytic fits to B-V for main sequence stars.

Second, the code distributes dust grains based on the geometry and parameters of
each disk component and generates each disk component image. The disk images,
calculated at lower spectral resolution, are divided by the stellar flux at those
wavelengths, resulting in a disk contrast cube. While the flux cube would have the
star's spectral features imprinted on it, and thus need to be calculated at higher
spectral resolution, the contrast cube does not, allowing for lower spectral resolution.

Next, generate_scene evolves all planets and the star using a Bulirsch-Stoer
integrator. By default, this only occurs for one time, t=0. If the user specifies the
keyword timemax in units of years, the code integrates at high time resolution steps
and saves the results every 10 days for timemax years. Because the disk is assumed to
be azimuthally symmetric, no integration is needed for the disk particles.

Finally, generate_scene produces the output .fits scene file. A detailed description of
the output data products are included in the section below.

6 Output Data Products

For each star, the generate_scene module of exoVista produces a single fits file. This
file has multiple extensions. The data contained in each extension is as follows:

Extension # | Data description

Vector of wavelength values for star and planets

Vector of wavelength values for debris disk

3D debris disk contrast cube (x, y, lambda) + noise map

2D star data array (time, position & orbit & spectrum)

ArlWINI—|O

L N_EXT 2D planet data array (time, position & orbit & spectrum)

Extension 0: Wavelength values for star and planets

Description: a 1D vector containing the wavelengths (in microns) at which stellar
flux and planet contrast were calculated

Key header parameters:

NAXIS1: length of wavelength vector (# of wavelengths)

N_EXT: maximum extension number (planet data in extensions 4 - N_EXT)
SPECRES: spectral resolution of wavelength vector

LAMMIN: minimum wavelength

LAMMAX: maximum wavelength

Extension 1: Wavelength values for debris disk contrast cube

Description: a 1D vector containing the wavelengths (in microns) at which disk
contrast was calculated

Key header parameters:

NAXIS1: length of wavelength vector (# of wavelengths)

SPECRES: spectral resolution of wavelength vector

LAMMIN: minimum wavelength

LAMMAX: maximum wavelength

Extension 2: Debris disk contrast cube

Description: a 3D cube (xpix x ypix x wavelength) of disk flux divided by star flux.
To convert this back into a disk flux, interpolate the cube to the desired
wavelength, then multiply by the stellar flux at those wavelengths. Note: The
number of entries in the last dimension is equal to the number of wavelengths + 1.
The “+ 1" is due to the fact that the last entry is not a contrast map, but a 2D map
estimating the numerical noise in the contrast calculations.

Key header parameters:

NAXIS1: # of pixels in x dimension

NAXIS2: # of pixels in y dimension

NAXIS3: # of wavelengths + 1

SPECRES: spectral resolution of wavelength vector

PXSCLMAS: pixel scale in mas

LNGND-N: longitude of the ascending node of the Nth disk component (degrees)
I-N: inclination of the Nth disk component relative to system midplane (degrees)
NZODIS-N: density of zodis of the Nth disk component

R-N: circumstellar distance of the peak density of the Nth disk component (AU)
DROR-N: value of the normalized Gaussian peak width of the Nth disk component
RINNER-N: value of the inner truncation radius of the Nth disk component (AU)
ETA-N: ratio of PR drag time to collision time for the blowout size for the Nth disk
component

HOR-N: normalized scale height for the Nth disk component

GO-N - G2-N: 3 values of scattering asymmetry parameter for the Nth disk
component

WO-N - W2-N: 3 weights for each HG scattering phase function for the Nth disk
component

MINSIZE: minimum grain size considered

MAXSIZE: maximum grain size considered

Extension 3: star data

Description: a 2D array (time x data value) containing the time, position, orbit, and
spectrum of the star for all time values. The data structure is organized as follows:
datali,j]: ith time value, jth data value
datal[i,0]: value of time (years)
datal[i,1]: x coordinate of star (in pixels) at ith time
data[i,2]: y coordinate of star (in pixels) at ith time
datali,3:8]: heliocentric orbital elements at ith time (N/A for star, set to zero)
data[i,9:14]: barycentric x, y, z positions (in AU) and barycentric vx, vy, vz
velocities (in AU/yr) at ith time
data[i,15:14+nlambda]: flux of star (in Jy) at ith time
Key header parameters:
NAXIS1: # of time values
NAXIS2: # of data values for each time value
PA: position angle of system midplane (degrees)
|- inclination of system midplane (degrees)
STARID: an internal catalog ID # for the star
RA: right ascension of star (decimal degrees)
DEC: declination of star (decimal degrees)
XMAG: stellar empirical magnitude for the X band
M_V: absolute V band magnitude of star
DIST: distance to star (pc)
TYPE: spectral type of star
LSTAR: bolometric stellar luminosity (solar luminosities)
TEFF: stellar effective temperature (K)
ANGDIAM: angular diameter of star (mas)
MASS: stellar mass (solar masses)
LOGG: log(stellar gravity)
RSTAR: stellar radius (solar radii)
WDS_SEP: most recent separation of companion in WDS catalog, if it exists
(arcsec)
WDS_DMAG: delta mag of companion in WDS catalog, if it exists
PMRA: proper motion in RA (mas/yr)
PMDEC: proper motion in DEC (mas/yr)
PXSCLMAS: pixel scale (mas)

Extension 4 - N_EXT: planet data

Description: a 2D array (time x data value) containing the time, position, orbit, and
contrast spectrum of each planet for all time values. The data structure is
organized as follows:

datali,j]: ith time value, jth data value
datal[i,0]: value of time (years)
datali,1]: x coordinate of planet (in pixels) at ith time
data[i,2]: y coordinate of planet (in pixels) at ith time
datal[i,3:8]: heliocentric orbital elements at ith time; semi-major axis (AU),
eccentricity, inclination (degrees), longitude of ascending node (degrees),
argument of pericenter (degrees), mean anomaly (degrees)
data[i,9:14]: barycentric x, y, z positions (in AU) and barycentric vx, vy, vz
velocities (in AU/yr) at ith time
data[i,15:14+nlambda]: contrast of planet at ith time
Key header parameters
NAXIS1: # of time values
NAXIS2: # of data values for each time value
M: planet mass (Earth masses)
R: planet radius (Earth radii)
ALBEDOQO_F: geometric albedo filename
PXSCLMAS: pixel scale (mas)

7 Example Uses of Outputs

7.1 Generating an astrophysical scene for high contrast imaging

We have included an example of a routine, example_image.pro, that produces an
image cube for modeling high contrast imaging surveys. This routine calls load_scene
to retrieve the necessary output, then convolves the planet fluxes with an Airy pattern

PSF, then sums up all components (except for the star). The resulting image is shown
below.

7.2 RV analysis

ExoVista calculates the barycentric velocity of the star as a function of time, so one
can plot the simulated radial velocities of every star. The star’s data is located in the
3 extension of the fits file. Here is an example in which the stellar data is retrieved
for a single system (“star #0") and we plot the stellar radial velocity, which clearly

shows the presence of at least three planets:

‘cstark@gsGijarvis exovista % idl

| IDL Version 8.5.1, Mac 0S X (darwin x86_64 m64).
(c) 2015, Exelis Visual Information Solutions, Inc., a subsidiary of
Installation number: 660-1249-13.
Licensed for use by: NASA - GSFC

IDL> d = readfits('./output/0.fits',h,ext=3)
I0L> t = d[*,0]
|10L> vz = di*,14]
|'IDL> plot, t,vz,xtitle="Time (yrs)',ytitle='Radial velocity (AU/yr)
% Unsupported X Windows visual (class: TrueColor, depth: 8).
| Substituting default (class: TrueColor, Depth: 24).
IDL>

7.3 Transit & TTV analysis

The barycentric coordinates of all bodies are recorded as a function of time, as well as
the heliocentric pixel coordinates. Below is an example in which we interpolate the
heliocentric coordinates of a few planets in an edge-on system and compare it to the
stellar radius. As you can see, one of the planets (green line) has either a transit or
eclipse event (the barycentric z coordinate will differentiate between this).

pro makeplots L B e e e e e A s B B

fitsfile = './output/0.fits"'
h = headfits(fitsfile) 4= 1
nplanets = sxparCh, '"N_EXT')-4

;Stellar information r
d = readfits(fitsfile,h,ext=3)

a = sxpar(h, '"ANGDIAM') ;mas

pixscale = sxpar(h, 'PXSCLMAS') ;mas

xstarpix = d[*,1] ;x pixel coordinate of star vs time
ystarpix = d[*,2] ;y pixel coordinate of star vs time

;Plot stellar diameter

phi = findgen(361)*!pi/180.

r = a + fltarr(361)

window,0,xs1ze=600,ysize-600

loadct,39

plot,r*cos(phi),r*sin(phi),xtitle="x (mas)',ytitle="y (mas)', $
/xs,/ys,xrange=[-5,5],yrange=[-5,5],background=!white,color=0, $
position=[0.15,0.15,0.95,0.95],/norm

y (mas)

;Plot x and y coordinates of planets

for i=0,nplanets-1 do begin r =
color = (i+1)*50
d = readfits(fitsfile,h,ext=4+i)
xmas = (d[*,1]-xstarpix)*pixscale —4—
ymas = (d[*,2]-ystarpix)*pixscale
oplot,xmas,ymas,color=color

endfor

|end

For planets whose orbital periods were adequately resolved by the record time step
interval, one can also interpolate the heliocentric positions to a higher resolution time
grid and use the results to perform a TTV analysis, as shown below.

;Read the data 40

iplanet_extension = 5

d = readfits(fitsfile,h,ext-iplanet_extension)
pixscalemas = sxpar(h, 'PXSCLMAS')

t = reform(d[0,*])

x = reform((d[1,*]-npix/2)*pixscalemas)

y = reforn((d[2,*]-npix/2)*pixscalenas)

= Sart(x*xey*y)

z = reforn(d[11,*])

;Interpolate to very fine time grid
t_hd = findgen(10000*1ong(n_elements(t)))
t_hd *= max(t)/max(t_hd)

r_hd = interpol(r,t,t_hd,/q
z_hd = interpol(z,t,t_hd,/q

20

;Find transit ingress times
valid = t_hd*0
j = where(z_hd gt @ and abs(x_hd) 1t angdiam)
if 3[0] ne -1 then valid[j] = 1
undefine, ttransit
for j=0,n_elements(t_hd)-1 do begin

if valid[j] eq 1 then begin

if n_elements(ttransit) eq @ then ttransit = t_hd[j] else ttransit = [ttransit,t_hd[j]]

while valid(j] eq 1 do j++
endfor
periods = ttransit[1:n_elements(ttransit)-1]-ttransit[0:n_elements(ttransit)-2]
avgperiod = mean(periods)
tdiff = ttransit*@ _20
for j=0,n_elements(ttransit)-1 do tdiff[j] = (j+1)*avgperiod-ttransit[j] ;subtract off expected transit time
tdiff -= mean(tdiff) ;make zero-mean
tdiff *= 365.25°24. ;convert to hours

Tlransit - Texpecled (hOllI'S)

iPlot the TTVs
set_plot, 'ps’
savefile="TTV_plot.eps’
1p.font=0

| IS S T N T S S S |

0.0 0.5 1.0 1.5 20
Time (Years)

device,/

Appendix
A1. Disk contrast calculations

Disk contrast is calculated on a pixel-by-pixel basis by integrated along the line of
sight. The z-resolution is set by a minimum number of pixels in the z direction and a
maximum z value, set equal to 2 times the largest extent of the disk in the z direction
within the image. The code iteratively resolves the z dimension with greater
resolution until the integrated contrast changes by less than the desired tolerance.
The code then increases the sub-pixel (x,y) resolution and checks that the tolerance is
still maintained. The tolerance is set to a maximum of 0.05 for disks fainter than 1
zodi, which is equivalent to 1/3 the flux of a dmag=26.5 point source using a 4 m
telescope. The tolerance is inversely proportional to the zodi level down to a
minimum of 0.0005—in the case of >100 zodis, at which point is assumed unlikely that
a dmag=26.5 point source will be imaged for that system.

The disk contrast is calculated for each grain size using a combination of Mie theory
and analytic approximations. ExoVista uses Mie theory-calculated scattering
effiencies, Qsca. To improve run time, exoVista does not use a Mie-theory
scattering phase function (SPF), and instead opts for a scattering phase function
composed of a linear combination of three Henyey-Greenstein SPFs. This choice

does impact the appearance of the disk, so we spend some time explaining our
rationale.

Ideally we'd have a detailed description of the oddly-shaped porous aggregates of
real debris disks. In practice this is a nearly impossible task, as each disk can have
grains covering a range of compositions and shapes. We know that the Qabs values
calculated by Mie theory can be used to fit the thermal SEDs of debris disks and
suggest plausible compositions dominated by astronomical silicates, water ice, and
vacuum, as well as plausible size distributions (near Dohnanyi). These calculations
also predict important disk color variations at visible wavelengths depending on the
composition and grain size distribution, important effects to include in the disk
models produced by exovista. For this reason, we use the Qabs and Qsca values
calculated by Mie theory. We note that Mie theory can introduce “ringing” into the
values of Qabs and Qsca, especially for grains similar in size to the wavelength. The
plot below shows Qsca vs wavelength for a 1 micron grain; the noticeable “ringing” is
due to the assumed spherical geometry of the grain, which is almost certainly not
representative of the real grain shape. If one considers a size distribution, this ringing
goes away, but only if one resolves the size distribution with many grain sizes. More
on this later...

For the SPF, we could either adopt the SPF calculated by Mie theory, or a linear
combination of HG functions. We choose the latter for several reasons:

1. The SPF of dust grains is sensitive to grain shape, whereas Mie theory assumes
a spherical geometry. Therefore it's an open question as to whether the Mie
theory SPFs are representative of reality.

2. The SPFs of observed debris disks vary from disk to disk. To include this
variation in exoVista while using Mie theory SPFs, we'd have to include some
prescription for grain shape or allow exoVista to at least draw from widely
different porosities/compositions. ExoVista does not currently have this
capability.

3. Mie theory SPFs suffer greatly from “ringing” artifacts, where the SPF is bright
at some scattering angles and faint at others, producing radial shadows in the
disk. To average over these, a large number of grain sizes must be used, which
slows down run time. The plot below and to the left compares the total flux
from a face-on disk of ‘organics’ normalized to the stellar flux (i.e. disk contrast)
vs wavelength using Mie Theory for all optical prescriptions with a grain size
resolution (s/ds) ~60 (black line) to a grain size resolution ~ 5 (red line),
keeping the full range of the size distribution constant (0.5 - 100 microns). This
shows that reducing the # of grain sizes produces significant errors in the flux

at a given scattering angle. The plot below and to the right shows the same
calculations where we have substituted a HG SPF; the ringing in the Mie theory
SPF is the cause of the disagreement on the left (not the ringing in Qsca).

_ : . : _ 1.8x10-5F T T T -
1.4x107 - - r

[-15
12x107° = 1.6x107°

—|5-_ i
L0x107° - 1.4x1075

Disk contrast
Disk contrast

8.0x107 - L
[12x107%

6.0x107'% =

L 1.0x107° -
40107 I

20x107° =
02 04 06 0.8 1.0 02 04 0.6) 08 10
Wavelength (microns) ‘Wavelength (microns)

We therefore choose to bypass the Mie Theory SPF and adopt a linear combination
of HG SPFs in exoVista, allowing us to reduce the number of grain sizes needed
(which reduces run time) as well as randomize each disk’s SPF by drawing different
SPF asymmetry parameters. We note that while this choice is reasonable, is does
impact the appearance and color of the simulated disks. Maybe most notably the Mie
theory SPF changes with grain size, which thus impacts the color of the disks,
especially if the grain size distribution in the disk changes. By using the same HG SPF
for all grain sizes, only Qsca integrated over the grain size distribution affects visible
wavelength color. This generally leads to milder color variations in a disk. Future
updates to exovista may consider varying the HG SPF asymmetry parameters w/
grain size, but that is not currently included.

Now we comment on the proper grain size resolution. In the test shown above, a
grain size resolution s/ds~5 was adequate for ‘organics’ when using HG SPFs, as they
resulted in ~1% errors in the flux vs wavelength at a given scattering angle. Shown
below and to the left is the same plot for astronomical silicates w/ a Dohnanyi size
distribution. Here, in spite of using a HG SPF, s/ds~5 (red line) is clearly inadequate,
because in this case the Qsca values greatly suffer from “ringing.” The only way to
average over these are to increase the number of grain sizes considered, which
would greatly increase run time. As a work-around, exoVista uses pre-calculated Qsca
and Qabs values that are integrated over a small range of grain sizes via .Iqq files.
Each .Iqq file covers a small range of grain sizes and resolved the range with 100
individual sizes assuming a Dohnanyi distribution. The plot below and to the right
shows the flux vs wavelength for ‘astrosil’ grains with a significantly non-Dohnanyi size
distribution (dN/ds ~ s~-5.5), resolved at a higher size resolution of s/ds~60 using

Mie theory on every grain size with (black line), s/ds~5 with Mie theory (red line), and
s/ds~5 with pre-calculated .Iqq files (blue line) with each .Iqq file being sub-resolved
into 100 grain sizes. Even in the case of an extremely non-Dohnanyi size distribution
as shown here, the pre-calculated Qsca and Qabs in the .Iqq files with s/ds~5
produce results that differ by just ~1% from what is expected. Because the Mie theory
calculations are done prior to creating the images, the run time of the code is further
reduced. We note that this improvement in run time and accuracy comes at the
expense of complexity—if the user wants to change the grain size resolution or
composition, the Iqq files must be regenerated for that scenario. If the user sticks
with the default values, these will not need to be regenerated.

2.0x107"* T T T
14x107° = 1.8x107° -

1.6x107° -

12x107°

Disk contrast

1.4x107° -

Disk contrast

12x107% -
1.0x1075 - - [

1.0x107° -

L | | |]
02 04 0.6 08 1.0
Wavelength (microns) 02 04 0.6 0.8 10

Wavelength (microns)

Finally, we touch on spectral resolution. The above curves were all calculated at a
spectral resolution R=300. There are clearly no features at that high of spectral
resolution that need to be resolved (except for the Mie theory ringing, which we have
averaged over in our calculation of Qabs and Qsca during production of the .Iqq
files). We can greatly reduce runtime of the code if we save disk contrast vs
wavelength at a lower spectral resolution. Testing astrosil, waterice, and organics, |
find that R=10, interpolated back up to R=300 is sufficient to resolve disk spectral
features. Below is a plot of disk contrast vs wavelength for a non-Dohnanyi
distribution (dN/ds ~ s~-5.5) of organics calculated with s/ds~60 at R=300 using Mie
theory for each grain size (black), with s/ds~5 at R=300 using .lqq files (red), and with
s/ds~5 at R=10 interpolated up to R=300 using .Iqq files (blue dashed curve). The
R=10 interpolated curve differs from the red curve by ~1% at most.

Disk contrast

2.0x107° -

1.5x107° -

1.0x107" -

04

0.6
‘Wavelength (microns)

08

