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1. Installing dustmap 
 
1) Download the most recent version of dustmap from www.starkspace.com/code.  Unzip 
and place the files into a directory.  I recommend placing them in a directory called 
“dustmap/” which should be a subdirectory of where you keep all of your IDL routines.  
Now, we need to make sure that the dustmap subdirectory is in your IDL path.  To do 
this, I recommend: 
 
2) Create the file .idlstartupfile in your home directory and add the following line… 
 
!PATH=!PATH+':'+Expand_Path('+/Users/username/Documents/IDL 
routines/dustmap') 
 
where the “/Users/username/Documents/Documents/IDL routines/dustmap” path should 
be replaced with the path to your own dustmap directory.  Note that if you have a folder 
that contains all of your IDL routines like I do, you only need to point the path to that 
directory, not the dustmap subdirectory. 
 
3) In your shell startup file (e.g. “.cshrc”), add the following line: 
 
setenv IDL_STARTUP '/Users/username/.idlstartupfile' 
 
4) dustmap is a hybrid IDL/C code.  You must compile the C portion of the code.  If you 
don’t have a c compiler, I recommend getting gcc.  Mac users can do this by 
downloading and installing the free XCode package. 
 
I have made compiling dustmap relatively easy by including an IDL procedure 
“compilec.pro.”  This will compile the C portion of the code and optimize it for your 
system.  To use this, CD to the dustmap subdirectory.  Start IDL.  Then type the 
following: 
 
IDL> compilec,’dustmap_c’ 
 
WARNING: for some reason, some versions of IDL only compile C code once per 
session.  Thus, before compiling a piece of C code, I always restart my IDL session. 
 
NOTE: the “compilec.pro” routine assumes you have gcc installed on your system.  If 
you have another compiler, you will need to edit the contents of compilec.pro such that 
the correct compiler is called.  It should be straightforward. 
 



2. Testing dustmap 
 
To make sure dustmap is working, CD to the dustmap subdirectory.  Start IDL.  Run the 
following command: 
 
IDL> dustmap, 'sample_inputfile.dat', image, distance=10., 
fov=1000., numpixels=200, datatype=1                                                                                                                              
 
You should see an image that looks like the following 
 

 
 
and you should see the following output: 
 

 
 



3. Using dustmap 
 
dustmap creates histograms, geometric optical depth maps, and scattered light and 
thermal emission images.  dustmap was originally intended to display the results of 
discrete particle (n-body) simulations.  Thus, you must supply dustmap with a file that 
contains the discrete particle locations.  Later we’ll discuss the format of those files and 
how to create your own, but for now, let’s just use the included sample data file.  Let’s 
run through a few different uses for dustmap. 
 
 

3.1. Creating a dust particle histogram 
 
The default and most simple use of dustmap.  Run the following: 
 
IDL> file = 'sample_inputfile.dat' 
IDL> dustmap, file, image, distance=10., fov=1000., 
numpixels=200, datatype=1                                                                                                                              
 
The above is the minimum required syntax for dustmap.  You must supply a file name 
(string) that contains your discrete data points, a variable name that will contain the 
output image, a distance to the system (in pc), a field of view fov (in mas), a number 
of pixels numpixels (or a pixelsize in mas), and you must define the format of the 
input file via the datatype keyword. 
 
The output image will be a histogram of the number of points per pixel.  For example, 
the above code produces the following result: 
 
IDL> print,minmax(image) 
       0.0000000       56.000000 
 
You can change the orientation of the disk as well, via the angle keywords 
inclination, pa, and longitude, each of which are in degrees.  Inclination 
tilts the disk around the image x-axis, pa rotates about the axis pointed out of the screen, 
and longitude rotates by the system’s z-axis.  For example, 
 
IDL> dustmap, file, image, distance=10., fov=1000., 
numpixels=200, datatype=1, inclination=60., longitude=90., 
pa=45. 
 
creates the following histogram 



 
  
 
 



3.2. Creating a geometric optical depth map 
 
In this mode, dustmap simply calculates the total cross section in each pixel per unit pixel 
area, i.e. a geometric optical depth.  To use this mode, set the opticaldepth keyword.  
You can do this by setting opticaldepth=1 or by setting /opticaldepth.  For 
example, run 
 
IDL> dustmap, file, image, distance=10., fov=1000., 
numpixels=200, datatype=1, /opticaldepth 
 
You’ll notice that the above produces an error.  To produce an optical depth map, you 
must supply the grain size rdust in microns via 
 
IDL> dustmap, file, image, distance=10., fov=1000., 
numpixels=200, datatype=1, /opticaldepth, rdust=1. 
 
 



3.3. Creating a thermal emission image 
 
To create a thermal emission image, set the thermal keyword.  Let’s just replace the 
opticaldepth keyword from the previous example with the thermal keyword… 
 
IDL> dustmap, file, image, distance=10., fov=1000., 
numpixels=200, datatype=1, /thermal, rdust=1. 
 
You’ll notice that you get an error again.  dustmap will tell you what you forgot to supply 
that is required to make a thermal emission image.  Here is a correct call to dustmap to 
create a thermal emission image 
 
IDL> dustmap, file, image, distance=10., fov=1000., 
numpixels=200, datatype=1, /thermal, rdust=1., lambda=10., 
Lstar=1., Tstar=5778., composition='astrosil' 
 
With the above call, a 10 micron thermal emission image (in Jy per pixel) is created 
assuming 1 micron astronomical silicate grains around a blackbody star with a 
temperature of 5778 K and a luminosity equal to 1 solar luminosity.  dustmap iteratively 
calculates the temperature of the dust grains by balancing incoming and outgoing energy.  
By setting composition='astrosil', the code is loading the indices of refraction 
for astronomical silicates and using Mie theory to calculate Qabs. 
 
dustmap can easily and efficiently calculate multi-wavelength data cubes.  For example, 
let’s define lambda as a vector via 
 
IDL> lambda = findgen(100)*10./99. + 0.3                                                                                                                                  
 
And then call dustmap, setting lambda=lambda.  We’ll also set the fstar=fstar 
keyword. 
 
IDL> dustmap, file, image, distance=10., fov=1000., 
numpixels=200, datatype=1, /thermal, rdust=1., 
lambda=lambda, Lstar=1., Tstar=5778., 
composition='astrosil', fstar=fstar 
 
Image is now a data cube with dimensions 200x200x100, where the 3rd index refers to 
each wavelength. The output variable fstar now contains the flux of the star as a 
function of wavelength.  As a sanity check, let’s run 
 
IDL> plot,lambda,fstar,/xlog,/ylog                                                                                                                                           
 
You should see a blackbody curve equal to the flux from the star in Jy.  dustmap also can 
load a Kurucz stellar atmosphere model.  To do this, set the /kurucz keyword as well 
as logg.  For example, let’s increase the resolution of lambda on a logarithmic scale and 
use a Kurucz model.  NOTE: currently dustmap only has solar metallicity Kurucz 
models.   



 
IDL> lambda = findgen(1000)/999.*(alog10(100.)-alog10(0.3)) 
+ alog10(0.3) 
IDL> lambda = 10.^lambda                                                                                                                                  
IDL> dustmap, file, image, distance=10., fov=1000., 
numpixels=200, datatype=1, /thermal, rdust=1., 
lambda=lambda, Lstar=1., Tstar=5778., 
composition='astrosil', fstar=fstar, /kurucz, logg=4.5 
IDL> window,0,xsize=500,ysize=500 
IDL> plot,lambda,fstar,/xlog,/ylog 
 
You should see absorption features in your stellar spectrum now.  It’s important to keep 
in mind that seemingly small changes in the UV can have a non-negligible impact on 
grain temperature, which can impact the SED of your disk.  Speaking of which, let’s plot 
the SED of our disk via 
 
IDL> plot,lambda,total(total(image,1),1),/xlog,/ylog                                                                                                                                            
 
You should see something that looks like a broadening blackbody, with a peak near 10 
microns.  That’s what we’d expect because our input disk model has dust located near 1 
AU. 
 
Just like fstar contains the output stellar flux, we can set qabs=qabs, and qabs will 
contain the output values of qabs. 
 
 



3.4. Creating a scattered light image 
 
WARNING: By default, dustmap sparsely samples the scattering phase functions at 
scattering angles <10° and >170°.  If your disk has a significant amount of dust at these 
scattering angles, such that the image appearance or total disk flux could be affected, you 
may need to increase the resolution of the scattering phase function.  See discussion 
below. 
 
dustmap can also create scattered light images.  To turn on scattered light, set the 
/scattered keyword.  For example, 
 
IDL> lambda = 0.55 
IDL> dustmap, file, image, distance=10., fov=1000., 
numpixels=200, datatype=1, /scattered, rdust=1., 
lambda=lambda, Lstar=1., Tstar=5778., 
composition='astrosil', /kurucz, logg=4.5, inclination=45. 
 
creates a V band scattered light image of a disk inclined by 45 degrees.  After running the 
above command, you’ll notice that you can only see half of the disk—this is the near side 
of the disk.  You can obviously scale the image to see the full disk.  For example, 
 
IDL> loadct,39 
IDL> tvscl,image[*,*,0]^0.25 
 
The near side of the disk is much brighter than the far side because, by default, dustmap 
uses the scattering phase function calculated by Mie theory, which can be significantly 
forward scattering.  In the text output from dustmap, you’ll see 
 
  Using Mie Theory SPF... 
 
You can override this scattering phase function and use a Henyey-Greenstein scattering 
phase function by setting the /hg keyword and g.  For example, 
 
IDL> lambda = 0.55 
IDL> dustmap, file, image, distance=10., fov=1000., 
numpixels=200, datatype=1, /scattered, rdust=1., 
lambda=lambda, Lstar=1., Tstar=5778., 
composition='astrosil', /kurucz, logg=4.5, inclination=45., 
/hg, g=0.1 
 
will produce a modestly forward scattering disk with a Henyey-Greenstein scattering 
phase function.  You should see the following in the dustmap output: 
 
  Using Henyey Greenstein SPF... 
 
Just like setting fstar=fstar returns the output stellar flux to the variable fstar, 
and qabs=qabs returns the emissivity, we can set qsca=qsca to return the scattering 



efficiency, costheta=costheta to return the cosine of the scattering angles used, 
and pfunc=pfunc to return the scattering phase function.  You should be able to call 
the standard IDL size procedure to determine which index corresponds to what.  For 
example, if we have 2 wavelengths, 
 
IDL> print,size(costheta,/dim) 
         500 
IDL> print,size(pfunc,/dim) 
           1           2         500 
 
So the 2nd index of pfunc correspond to wavelength and the 3rd index correspond to 
scattering angle. 
 
At the beginning of this section there is a warning about how dustmap sparsely samples 
the scattering phase functions at angles <10° and >170°.  If your disk has a significant 
amount of dust at these scattering angles, the image may be inaccurate.  To see what 
angles dustmap is using for the phase function, call dustmap with the keyword 
costheta=costheta, then run 
 
IDL> print,acos(costheta)*180/!pi 
 
If the default resolution is not sufficient, you can increase it by setting the ncostheta 
keyword.  The default is ncostheta=500. 
 
 
 
 



3.4. More dustmap features 
 

• Simultaneous scattered light and thermal emission: simply set both the 
/scattered and /thermal keywords to include both scattered light and 
thermal emission 

• Scaling up the dust disk: the scaling keyword (default scaling=1) simply 
multiplies each grain by this value.  May be useful if creating size distributions. 

• Multiple input files: you can send dustmap a vector of input files, e.g. files = 
[‘file1’,’file2’].  Two other dustmap keywords (rdust and scaling) 
can also be vectors, and each entry in those vectors will correspond to a given 
entry in files.  For example, if you send dustmap the above files vector, as 
well as rdust=[1.,2.], file1 will correspond to 1 micron grains and file2 will 
correspond to 2 micron grains.  To operate dustmap as efficiently as possible, 
make sure to sort files by grain size.  This feature is useful if you have many data 
points and not enough RAM to load them as a single file, or if you want to create 
size distributions. 

• Mie theory compositions: dustmap comes with 7 possible compositions to be 
chosen by the composition keyword.  The real and imaginary indices of 
refraction as a function of wavelength are stored in .lnk files in the lnkfile 
subdirectory.  The user may want to supply his/her own composition.  To do so, 
the user must create a .lnk file.  To use this file instead of one of the default 
compositions, set the lnkfile keyword to a string containing the full path and 
name of the desired file. 

• Sublimation temperature: dustmap can ignore/remove grains whose temperature 
exceeds the sublimation temperature.  To do this, simply set the tsublimate 
keyword equal to the sublimation temperature in degrees K.  By default, 
tsublimate is infinite.  This only works in scattered light and thermal 
emission modes, and is not used in the histogram or optical depth modes. 

• Generic optical constants: by default, dustmap assumes you want to use Mie 
theory.  You may wish to specify some other optical constants.  To do so, set the 
/oc_generic_flag keyword.   You will also be required to set the qexp and 
albedo keywords, and will be forced to use a Henyey-Greenstein scattering 
phase function.  For generic optical constants, the code calculates Qabs and Qsca 
as follows: 

Qabs = 1    for λ < (2 π rdust) 
Qabs = (2 π rdust / λ)qexp   for λ > (2 π rdust) 
Qsca = albedo / (1 – albedo) * Qabs 

• Alternate viewing geometries: you can view the model disk from any location—
even within the disk.  To view a disk from within, it’s easiest to set the /AU 
keyword, which tells the code that the distance keyword is in units of AU 
instead of pc.  You should probably also set the /degrees keyword, which tells 



the code that the fov and pixelsize keywords are in units of degrees instead 
of mas.  To make an all-sky map, simply set the /allsky keyword and the 
appropriate fov will be chosen.  By default, dustmap creates a rectangular image.  
For large fields of view this can create projection problems (especially noticeable 
in all-sky maps where the poles will be darker).  To correct for this, you can tell 
dustmap to create an Aitoff projection via the /aitoff keyword. 

• Data types: to run dustmap, you must specify a binary input file containing the 
points, as well as the datatype.  The keyword datatype specifies the format 
of the binary input file, and can range from a value of 1 to 4.  See dmgetdata.c for 
the details of each format.  Use dustmap_binary_writer.pro to easily make your 
own binary files.  It will tell you the datatype it is using given the data you sent it.  

 



4. Creating Binary Input Files 
 
dustmap was created to synthesize images from n-body dynamical simulations, for which 
hundreds of millions of points may be necessary.  To keep file sizes manageable and 
reduce the run time of the code, the input files are assumed to be binary files.  For details 
of the binary file formats, please refer to dmgetdata.c.  You can make your own binary 
data files with the proper formatting fairly easily. 
 

4.1. Writing a binary file using a known set of points 
 
Let’s say you already have vectors of x, y, and z coordinates.  You can use 
dustmap_binary_writer.pro to convert these points into a binary file.  To do so, simply 
call 
 
IDL> dustmap_binary_writer, output_filename, particle_IDs, 
x, y, z 
 
where output_filename is a string of the output file to be created, particle_IDs 
is a vector of length n that identifies the “ID” number of each particle, and x, y, and z are 
vectors of length n that contain the 3D coordinates of each particle in AU.  It is highly 
likely that you don’t care about which particle created which set of coordinates, so for 
most applications, the entries in particle_IDs don’t matter.  For example, the 
following would be a valid call to dustmap_binary_writer.pro: 
 
IDL> dustmap_binary_writer, ‘test.dat’, 
intarr(n_elements(x)), x, y, z 
 
dustmap_binary_writer.pro will tell you the datatype of the output file created, so that 
when you call dustmap, you will know what value to use. 
 
Other available keywords for dustmap_binary_writer.pro are vx, vy, vz, and 
intensity.  vx, vy, and vz are the x, y, and z velocities of each particle—data 
that is useful to dynamical modelers.  intensity contains a scaling factor for each 
particle entry, i.e. how many physical particles that one entry represents. 
 



4.2. Writing a binary file using an analytic description 
 
To create a distribution of points from an analytic description, one could randomly 
distribute points, assign each point an intensity based on the analytic density 
distribution, then write those points to file.  Unfortunately, due to the randomization of 
particle locations, the image will suffer from Poisson noise.  On the other hand, this 
method is relatively easy to code and allows the user to produce images of this set of 
points at any orientation. 
 
Alternatively, one could greatly reduce the noise of the images by producing a set of 
particle coordinates “tuned” to the orientation of the disk and the resolution of the image 
to be produced.  Obviously this requires knowing the disk orientation and image 
resolution prior to making the image.  So if you are using dustmap to try to determine the 
disk’s orientation, you will have to create a new set of points for each orientation. 
 
I’m working on a tool to assist with this… 


